Influence of Residual Silanol Groups on Solvent and Ion Distribution at a Chemically Modified Silica Surface

We report on molecular dynamics simulations of solvent and ion distribution at a prototypic alkyl-modified silica surface under explicit consideration of residual silanol group activity. The model contains two β-cristobalite silica walls with dimethyloctylsilyl (C8) ligands as the main modification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2009-05, Vol.113 (21), p.9230-9238
Hauptverfasser: Melnikov, Sergey M, Höltzel, Alexandra, Seidel-Morgenstern, Andreas, Tallarek, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on molecular dynamics simulations of solvent and ion distribution at a prototypic alkyl-modified silica surface under explicit consideration of residual silanol group activity. The model contains two β-cristobalite silica walls with dimethyloctylsilyl (C8) ligands as the main modification and trimethylsilyl groups for end-capping, grafted at surface densities of 2.95 μmol/m2 and 0.85 μmol/m2, respectively. Residual silanol groups are present at a surface density of 3.8 μmol/m2. The mobile phase consists of water/acetonitrile mixtures over the whole range of volumetric compositions. We have studied the two limiting cases of residual silanol group activity: (i) undissociated silanol groups, and (ii) dissociated silanol groups with sodium ions as counterions. Solvent and ion distribution in the system as well as the orientational arrangement of solvent molecules and the conformation of the bonded phase are presented for both cases of residual silanol activity. We analyze the influence of mobile phase composition on system conformation to illustrate that the presence of residual silanol groups in their ionized, sodium salt form induces larger changes than a variation of the water/acetonitrile mixture.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp8098544