Immobilization of Laccase on Nanoporous Gold: Comparative Studies on the Immobilization Strategies and the Particle Size Effects
Nanoporous gold (NPG), prepared simply by dealloying Ag from Au/Ag alloy, was used in the present study as a carrier for laccase immobilization. Three immobilization strategies, i.e., physical adsorption, electrostatic attraction, and covalent coupling, were used to immobilize laccase on NPG. A deta...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2009-02, Vol.113 (6), p.2521-2525 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoporous gold (NPG), prepared simply by dealloying Ag from Au/Ag alloy, was used in the present study as a carrier for laccase immobilization. Three immobilization strategies, i.e., physical adsorption, electrostatic attraction, and covalent coupling, were used to immobilize laccase on NPG. A detailed comparison among the three strategies was made in light of the loading, the specific activity, and the leakage of laccase. The present results indicated that the physical adsorption strategy was the best one for laccase immobilization on NPG. This was because of the potential covalent linkage between the nanoscale gold surface and the amino groups of the residue amino acids of laccase. The effects of the particle size of NPG on laccase loading and enzyme kinetics were also investigated. When the particle size of NPG got smaller, more laccase could access the inner pore and be immobilized. The kinetic study showed that the crushed NPG not only enhanced mass transfer of the substrate and its oxidation product but also favored the exposure of the active sites of the immobilized laccase to the substrate, i.e., the crushing facilitated the enhancement of the catalytic efficiency of laccase. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp8090304 |