Solid-State NMR Investigation of the Possible Existence of “Nanoblocks” in the Clear Solution Synthesis of MFI Materials

The structure of the intermediate species in the clear solution synthesis of the MFI framework (zeolite ZSM 5) has been investigated using the characteristic 13C, 14N, 15N, and 2D spectra of the tetrapropylammonium (TPA) template ions as probes as well as the 29Si spectra of the silicate species pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2008-01, Vol.112 (1), p.80-88
Hauptverfasser: Fyfe, Colin A, Darton, Richard J, Schneider, Celine, Scheffler, Franziska
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure of the intermediate species in the clear solution synthesis of the MFI framework (zeolite ZSM 5) has been investigated using the characteristic 13C, 14N, 15N, and 2D spectra of the tetrapropylammonium (TPA) template ions as probes as well as the 29Si spectra of the silicate species present in samples that can be isolated by centrifugation. Comparison with the corresponding spectra of the final products that can be characterized by X-ray diffraction indicates that there is no evidence for the involvement of nanospecies, as has been proposed, and that crystallization is most probably from an amorphous gel. This conclusion is supported by the lack of deuterium rotational echo double-resonance dephasing of the 29Si spectra by deuterated TPA of the earliest intermediate species obtained, while it is clearly observed in the final product. These observations indicate that any TPA ions present in the gel phase are not in intimate contact with the silicon nuclei as they would be if in the local MFI environment. This is supported by the very low amount of TPA found by 14N NMR, which is much less than needed for the proposed nano intermediates and the fact that the TPA present can be removed by simple re-suspension in water and recovery.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp7095955