Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material

Both nanocolumnar and dense germanium thin films, synthesized by evaporative deposition, were tested as a potential anode material for sodium-ion batteries. The reversible capacity of the nanocolumnar films was found to be 430 mAh/g, which is higher than the theoretical capacity of 369 mAh/g. The na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-09, Vol.117 (37), p.18885-18890
Hauptverfasser: Abel, Paul R, Lin, Yong-Mao, de Souza, Tania, Chou, Chia-Yun, Gupta, Asha, Goodenough, John B, Hwang, Gyeong S, Heller, Adam, Mullins, C. Buddie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both nanocolumnar and dense germanium thin films, synthesized by evaporative deposition, were tested as a potential anode material for sodium-ion batteries. The reversible capacity of the nanocolumnar films was found to be 430 mAh/g, which is higher than the theoretical capacity of 369 mAh/g. The nanocolumnar films retained 88% of their initial capacity after 100 cycles at C/5, whereas the dense films began to deteriorate after ∼15 cycles. Additionally, the nanocolumnar films were stable at charge/discharge rates up to 27C (10 A/g). The diffusion coefficient for sodium in germanium was estimated, from impedance analysis of the dense films, to be ∼10–13 cm2 s–1. Modeling of diffusion in the sodium- germanium system predicts that sodium diffusion in the near-surface layers of the material is significantly faster than in the bulk. These results show that small feature sizes are critical for rapid, reversible electrochemical sodiation of germanium.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp407322k