Mechanism of Alcohol–Water Separation in Metal–Organic Frameworks
The metal–organic framework Zn2(BDC)2(TED) (1) has been reported to be water-stable and highly selective toward the adsorption of water and alcohols, suggesting the application of this material as a separation membrane for the production of bioethanol. We have studied the adsorption mechanism of wat...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2013-02, Vol.117 (8), p.4124-4130 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The metal–organic framework Zn2(BDC)2(TED) (1) has been reported to be water-stable and highly selective toward the adsorption of water and alcohols, suggesting the application of this material as a separation membrane for the production of bioethanol. We have studied the adsorption mechanism of water, methanol, ethanol, and dimethylether in this framework by means of density-functional theory with corrections for London dispersion. We show that the combination of the hydrogen bond between the hydroxyl group in ethanol with the oxy group in 1 and the van der Waals interaction between the ethanol alkyl chain with the phenyl ring in 1 is responsible for the preferential adsorption of ethanol over water in the framework. The calculated enthalpy of adsorption for the four compounds in 1 is in excellent agreement with experimental results. We further note that the computational approach has to be chosen with care: It is essential to account for London dispersion interactions, as well as the use of large models, preferably the full periodic structure, to obtain correct adsorption geometries and energies. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp312323b |