Band Gap Tunable N‑Type Molecules for Organic Field Effect Transistors

A series of four novel n-type molecules has been synthesized. Unlike previous approaches, the end group of these molecules was fixed and the molecular core was varied. The resulting materials were thoroughly analyzed. Electronic properties were derived from photoemission spectroscopy, optical proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-06, Vol.117 (22), p.11530-11539
Hauptverfasser: Glowatzki, H, Sonar, P, Singh, S. P, Mak, A. M, Sullivan, M. B, Chen, W, Wee, A. T. S, Dodabalapur, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of four novel n-type molecules has been synthesized. Unlike previous approaches, the end group of these molecules was fixed and the molecular core was varied. The resulting materials were thoroughly analyzed. Electronic properties were derived from photoemission spectroscopy, optical properties were derived with the help of optical spectroscopy, and the structure of thin films on Au(111) was derived by scanning tunneling microscopy (STM). In addition, prototypical organic field-effect transistors (OFETs) (forming n-channels in OFETs) have been fabricated and tested. The correlation between the device performance of the respective OFETs (i.e., electron mobility) and their electronic as well as structural properties was investigated. It turned out that a combination of beneficial electronic and structural properties provides the best results. These findings are important for the design of new materials for future device applications.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp311092s