Design of Nanostructured Hybrid Materials Based on Carbon and Metal Oxides for Li Ion Batteries

Development of advanced electrode materials for Li ion battery (LIB) has attracted great attention due to the demand for portable power sources with higher energy density and higher power density. Transition metal oxides have attracted particular interest due to their low cost, high theoretical capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-12, Vol.116 (51), p.26685-26693
Hauptverfasser: Shi, Wenhui, Rui, Xianhong, Zhu, Jixin, Yan, Qingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of advanced electrode materials for Li ion battery (LIB) has attracted great attention due to the demand for portable power sources with higher energy density and higher power density. Transition metal oxides have attracted particular interest due to their low cost, high theoretical capacities and environmentally friendly synthesis processes. However, improvements are still required on their poor capacity retention and unsatisfactory rate performance. Hybridizing metal oxide nanostructures with carbon nanostructures can be an effective route to achieve better Li storage properties by improving the kinetics of charge transfer and alleviating the structural strain during the charge/discharge process. This feature article briefly summarizes our recent research progress on nanostructured hybrids of carbonaceous materials (e.g., amorphous carbon, reduced graphene oxide, and CNT) and metal oxides (e.g., CoO, Fe2O3, V2O5, etc.) in terms of designed synthesis chemistry, understanding the structure-process relationship and development of new types of electrodes.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp309000r