Photocharging ZnO Nanocrystals: Picosecond Hole Capture, Electron Accumulation, and Auger Recombination

Photochemical charging of colloidal ZnO nanocrystals has been studied using continuous-wave and time-resolved photoluminescence spectroscopies in conjunction with electron paramagnetic resonance spectroscopy. Experiments have been performed with and without addition of alcohols as hole quenchers, fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-09, Vol.116 (38), p.20633-20642
Hauptverfasser: Cohn, Alicia W, Janßen, Nils, Mayer, James M, Gamelin, Daniel R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photochemical charging of colloidal ZnO nanocrystals has been studied using continuous-wave and time-resolved photoluminescence spectroscopies in conjunction with electron paramagnetic resonance spectroscopy. Experiments have been performed with and without addition of alcohols as hole quenchers, focusing on ethanol. Both aerobic and anaerobic conditions have been examined. We find that ethanol quenches valence-band holes within ∼15 ps of photoexcitation, but does not quench the trapped holes responsible for the characteristic visible photoluminescence of ZnO nanocrystals. Hole quenching yields “charged” nanocrystals containing excess conduction-band electrons. The extra conduction-band electrons quench visible trap-centered luminescence via a highly effective electron/trap-state Auger-type cross-relaxation process. This Auger process is prominent even under aerobic photoexcitation conditions, particularly when samples are not stirred. Charging also reduces exciton nonradiative decay rates, resulting in increased UV luminescence. The dependence of charging on ethanol concentration and the reduced exciton nonradiative decay rates of charged ZnO nanocrystals are discussed. Finally, the results here provide a kinetic basis for understanding photochemical electron accumulation in colloidal ZnO nanocrystals.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp3075942