Synthesis and Transformation of Zn-Doped PbS Quantum Dots
A micelle-assisted wet-chemistry route is developed to synthesize pure and Zn-doped lead sulfide (PbS) quantum dots (QDs) and nanocrystals (NCs) under microwave irradiation. The formation mechanism includes three major steps, initialization of π-bonded complex, transformation into a micelle structur...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2012-10, Vol.116 (41), p.22001-22008 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A micelle-assisted wet-chemistry route is developed to synthesize pure and Zn-doped lead sulfide (PbS) quantum dots (QDs) and nanocrystals (NCs) under microwave irradiation. The formation mechanism includes three major steps, initialization of π-bonded complex, transformation into a micelle structure, and the dissipation of nanoparticles (NPs). The micelle structure plays an important role in PbS NCs and QDs transformation and formation. X-ray absorption near-edge structure (XANES) analysis confirms the quantum confinement in PbS QDs. The Burstein–Moss effect is responsible for the blue-shift of the absorption induced by Zn doping. This research opens a new way to prepare NCs and QDs that enables high-resolution analysis in quantum refinement and electronic structures. The NCs and QDs produced here have strong potential in applications in optical and electronic communication. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp304728u |