Remarkable Stability of High Energy Conformers in Self-Assembled Monolayers of a Bistable Electro- and Photoswitchable Overcrowded Alkene

Although bistability of molecular switches in solution is well established, achieving highly robust bistable molecular switching in self-assembled monolayers remains a challenge. Such systems are highly attractive as components in organic electronics and molecular-based photo and electrochromic devi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-11, Vol.115 (46), p.22965-22975
Hauptverfasser: Ivashenko, Oleksii, Logtenberg, Hella, Areephong, Jetsuda, Coleman, Anthony C, Wesenhagen, Philana V, Geertsema, Edzard M, Heureux, Nicolas, Feringa, Ben L, Rudolf, Petra, Browne, Wesley R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although bistability of molecular switches in solution is well established, achieving highly robust bistable molecular switching in self-assembled monolayers remains a challenge. Such systems are highly attractive as components in organic electronics and molecular-based photo and electrochromic devices. Here we report a remarkably robust surface confined bisthiaxanthylidene redox switch that shows excellent bistability, manifested in reversible changes in spectroscopic and electrochemical properties and in physical properties such as water contact angle changes (ca. 30° difference in water contact angle between the two redox states of a bisthiaxanthylidene self-assembled monolayer). The effect of surface immobilization of bis-thiaxanthylidene on its photochromic, thermal and electrochemical properties is described. Surface immobilization is achieved by incorporating thiol- and alkylsiloxy-terminated “legs” on one of the tricyclic aromatic units. The molecular switch in its neutral and dicationic state, generated by bulk electrolysis, was characterized in solution, in the solid state and on surfaces, by UV/vis absorption, Fourier transform infrared, X-ray photoelectron, and Raman spectroscopies and by cyclic voltammetry. In solution, the redox switching to the dicationic state is achieved by oxidation at 1.2 V versus SCE. Reduction of the dication at
ISSN:1932-7447
1932-7455
DOI:10.1021/jp206889y