Silicon Nanocrystals Produced by Nanosecond Laser Ablation in an Organic Liquid

Small (3−5 nm in diameter following HRTEM images) Si nanocrystals were produced in a two-stage process including (1) nanosecond laser ablation of a Si target in an organic liquid (chloroform) that results in formation of big composite polycrystalline particles (about 20−100 nm average diameter) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-03, Vol.115 (12), p.5147-5151
Hauptverfasser: Abderrafi, Kamal, García Calzada, Raúl, Gongalsky, Maxim B, Suárez, Isaac, Abarques, Rafael, Chirvony, Vladimir S, Timoshenko, Victor Yu, Ibáñez, Rafael, Martínez-Pastor, Juan P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Small (3−5 nm in diameter following HRTEM images) Si nanocrystals were produced in a two-stage process including (1) nanosecond laser ablation of a Si target in an organic liquid (chloroform) that results in formation of big composite polycrystalline particles (about 20−100 nm average diameter) and (2) ultrasonic post-treatment of Si nanoparticles in the presence of HF. The post-treatment is responsible for disintegration of the composite Si particles, release of small individual nanocrystals, and reduction of their size due to HF-induced etching of Si oxide. The downshift and broadening of the ∼520 cm−1 Raman phonon band of the small Si nanocrystals with respect to the bulk Si Raman band is consistent with the presence of ∼4.5 nm Si nanocrystals. The photoluminescence spectra (450−900 nm) and decay kinetics of small Si nanocrystals were detected, and the possible origin of the luminescence is discussed.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp109400v