Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids

Electrical conductivity in quantum dot solids is crucial for application in devices. In addition to the well-known ligand exchange strategies for enhanced conductivity, the current study examined the optical, structural, and electrical properties of ethanedithiol-treated layer-by-layer (LbL) assembl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-01, Vol.115 (3), p.607-612
Hauptverfasser: Baik, Seung Jae, Kim, Kyungnam, Lim, Koeng Su, Jung, SoMyung, Park, Yun-Chang, Han, Dong Geon, Lim, Sooyeon, Yoo, Seunghyup, Jeong, Sohee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 612
container_issue 3
container_start_page 607
container_title Journal of physical chemistry. C
container_volume 115
creator Baik, Seung Jae
Kim, Kyungnam
Lim, Koeng Su
Jung, SoMyung
Park, Yun-Chang
Han, Dong Geon
Lim, Sooyeon
Yoo, Seunghyup
Jeong, Sohee
description Electrical conductivity in quantum dot solids is crucial for application in devices. In addition to the well-known ligand exchange strategies for enhanced conductivity, the current study examined the optical, structural, and electrical properties of ethanedithiol-treated layer-by-layer (LbL) assembled quantum dot solid (QDS) films following low-temperature annealing (room temperature to 170 °C). As the annealing temperature increased, it was induced that the average separation between nanocrystal quantum dots is decreased, and accordingly, the overall conductivity of the QDS increased exponentially. From a simplified percolation model, the activation energy of temperature-dependent quantum dot attachment was estimated to be around 0.26−0.27 eV both for PbS and PbSe quantum dot solids. Furthermore, the results of this study indicated that device applications requiring higher conductivity, attainable through high-temperature annealing, may also require repassivation after annealing.
doi_str_mv 10.1021/jp1084668
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp1084668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e63086433</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-dce904fc0184b23781570f0bf8827a588dcf0a0c015ff7176fa23ede66ebcc63</originalsourceid><addsrcrecordid>eNptkM9LwzAcxYMoOKcH_4NcPHioftM2TXoc9ceEgoi9lyz5Zutok5G0yv57J5OdPL0H78Pj8Qi5ZfDAIGWP2x0DmReFPCMzVmZpInLOz08-F5fkKsYtAM-AZTPS1P47aXDYYVDjFJAunEPVd25NrQ902a03_Z5W3plJj90X0hqVodVG9dqv0XUG6cek3DgN9MmP9NP3nYnX5MKqPuLNn85J8_LcVMukfn99qxZ1olJejonRWEJuNTCZr9JMSMYFWFhZKVOhuJRGW1BwyLm1gonCqjRDg0WBK62LbE7uj7U6-BgD2nYXukGFfcug_X2jPb1xYO-OrNKx3fopuMOwf7gfO0Zedw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids</title><source>ACS Publications</source><creator>Baik, Seung Jae ; Kim, Kyungnam ; Lim, Koeng Su ; Jung, SoMyung ; Park, Yun-Chang ; Han, Dong Geon ; Lim, Sooyeon ; Yoo, Seunghyup ; Jeong, Sohee</creator><creatorcontrib>Baik, Seung Jae ; Kim, Kyungnam ; Lim, Koeng Su ; Jung, SoMyung ; Park, Yun-Chang ; Han, Dong Geon ; Lim, Sooyeon ; Yoo, Seunghyup ; Jeong, Sohee</creatorcontrib><description>Electrical conductivity in quantum dot solids is crucial for application in devices. In addition to the well-known ligand exchange strategies for enhanced conductivity, the current study examined the optical, structural, and electrical properties of ethanedithiol-treated layer-by-layer (LbL) assembled quantum dot solid (QDS) films following low-temperature annealing (room temperature to 170 °C). As the annealing temperature increased, it was induced that the average separation between nanocrystal quantum dots is decreased, and accordingly, the overall conductivity of the QDS increased exponentially. From a simplified percolation model, the activation energy of temperature-dependent quantum dot attachment was estimated to be around 0.26−0.27 eV both for PbS and PbSe quantum dot solids. Furthermore, the results of this study indicated that device applications requiring higher conductivity, attainable through high-temperature annealing, may also require repassivation after annealing.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp1084668</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Nanops and Nanostructures</subject><ispartof>Journal of physical chemistry. C, 2011-01, Vol.115 (3), p.607-612</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a259t-dce904fc0184b23781570f0bf8827a588dcf0a0c015ff7176fa23ede66ebcc63</citedby><cites>FETCH-LOGICAL-a259t-dce904fc0184b23781570f0bf8827a588dcf0a0c015ff7176fa23ede66ebcc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp1084668$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp1084668$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Baik, Seung Jae</creatorcontrib><creatorcontrib>Kim, Kyungnam</creatorcontrib><creatorcontrib>Lim, Koeng Su</creatorcontrib><creatorcontrib>Jung, SoMyung</creatorcontrib><creatorcontrib>Park, Yun-Chang</creatorcontrib><creatorcontrib>Han, Dong Geon</creatorcontrib><creatorcontrib>Lim, Sooyeon</creatorcontrib><creatorcontrib>Yoo, Seunghyup</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><title>Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Electrical conductivity in quantum dot solids is crucial for application in devices. In addition to the well-known ligand exchange strategies for enhanced conductivity, the current study examined the optical, structural, and electrical properties of ethanedithiol-treated layer-by-layer (LbL) assembled quantum dot solid (QDS) films following low-temperature annealing (room temperature to 170 °C). As the annealing temperature increased, it was induced that the average separation between nanocrystal quantum dots is decreased, and accordingly, the overall conductivity of the QDS increased exponentially. From a simplified percolation model, the activation energy of temperature-dependent quantum dot attachment was estimated to be around 0.26−0.27 eV both for PbS and PbSe quantum dot solids. Furthermore, the results of this study indicated that device applications requiring higher conductivity, attainable through high-temperature annealing, may also require repassivation after annealing.</description><subject>C: Nanops and Nanostructures</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkM9LwzAcxYMoOKcH_4NcPHioftM2TXoc9ceEgoi9lyz5Zutok5G0yv57J5OdPL0H78Pj8Qi5ZfDAIGWP2x0DmReFPCMzVmZpInLOz08-F5fkKsYtAM-AZTPS1P47aXDYYVDjFJAunEPVd25NrQ902a03_Z5W3plJj90X0hqVodVG9dqv0XUG6cek3DgN9MmP9NP3nYnX5MKqPuLNn85J8_LcVMukfn99qxZ1olJejonRWEJuNTCZr9JMSMYFWFhZKVOhuJRGW1BwyLm1gonCqjRDg0WBK62LbE7uj7U6-BgD2nYXukGFfcug_X2jPb1xYO-OrNKx3fopuMOwf7gfO0Zedw</recordid><startdate>20110127</startdate><enddate>20110127</enddate><creator>Baik, Seung Jae</creator><creator>Kim, Kyungnam</creator><creator>Lim, Koeng Su</creator><creator>Jung, SoMyung</creator><creator>Park, Yun-Chang</creator><creator>Han, Dong Geon</creator><creator>Lim, Sooyeon</creator><creator>Yoo, Seunghyup</creator><creator>Jeong, Sohee</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110127</creationdate><title>Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids</title><author>Baik, Seung Jae ; Kim, Kyungnam ; Lim, Koeng Su ; Jung, SoMyung ; Park, Yun-Chang ; Han, Dong Geon ; Lim, Sooyeon ; Yoo, Seunghyup ; Jeong, Sohee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-dce904fc0184b23781570f0bf8827a588dcf0a0c015ff7176fa23ede66ebcc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Nanops and Nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baik, Seung Jae</creatorcontrib><creatorcontrib>Kim, Kyungnam</creatorcontrib><creatorcontrib>Lim, Koeng Su</creatorcontrib><creatorcontrib>Jung, SoMyung</creatorcontrib><creatorcontrib>Park, Yun-Chang</creatorcontrib><creatorcontrib>Han, Dong Geon</creatorcontrib><creatorcontrib>Lim, Sooyeon</creatorcontrib><creatorcontrib>Yoo, Seunghyup</creatorcontrib><creatorcontrib>Jeong, Sohee</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baik, Seung Jae</au><au>Kim, Kyungnam</au><au>Lim, Koeng Su</au><au>Jung, SoMyung</au><au>Park, Yun-Chang</au><au>Han, Dong Geon</au><au>Lim, Sooyeon</au><au>Yoo, Seunghyup</au><au>Jeong, Sohee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-01-27</date><risdate>2011</risdate><volume>115</volume><issue>3</issue><spage>607</spage><epage>612</epage><pages>607-612</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Electrical conductivity in quantum dot solids is crucial for application in devices. In addition to the well-known ligand exchange strategies for enhanced conductivity, the current study examined the optical, structural, and electrical properties of ethanedithiol-treated layer-by-layer (LbL) assembled quantum dot solid (QDS) films following low-temperature annealing (room temperature to 170 °C). As the annealing temperature increased, it was induced that the average separation between nanocrystal quantum dots is decreased, and accordingly, the overall conductivity of the QDS increased exponentially. From a simplified percolation model, the activation energy of temperature-dependent quantum dot attachment was estimated to be around 0.26−0.27 eV both for PbS and PbSe quantum dot solids. Furthermore, the results of this study indicated that device applications requiring higher conductivity, attainable through high-temperature annealing, may also require repassivation after annealing.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp1084668</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2011-01, Vol.115 (3), p.607-612
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp1084668
source ACS Publications
subjects C: Nanops and Nanostructures
title Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Temperature%20Annealing%20for%20Highly%20Conductive%20Lead%20Chalcogenide%20Quantum%20Dot%20Solids&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Baik,%20Seung%20Jae&rft.date=2011-01-27&rft.volume=115&rft.issue=3&rft.spage=607&rft.epage=612&rft.pages=607-612&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp1084668&rft_dat=%3Cacs_cross%3Ee63086433%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true