Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids

Electrical conductivity in quantum dot solids is crucial for application in devices. In addition to the well-known ligand exchange strategies for enhanced conductivity, the current study examined the optical, structural, and electrical properties of ethanedithiol-treated layer-by-layer (LbL) assembl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-01, Vol.115 (3), p.607-612
Hauptverfasser: Baik, Seung Jae, Kim, Kyungnam, Lim, Koeng Su, Jung, SoMyung, Park, Yun-Chang, Han, Dong Geon, Lim, Sooyeon, Yoo, Seunghyup, Jeong, Sohee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical conductivity in quantum dot solids is crucial for application in devices. In addition to the well-known ligand exchange strategies for enhanced conductivity, the current study examined the optical, structural, and electrical properties of ethanedithiol-treated layer-by-layer (LbL) assembled quantum dot solid (QDS) films following low-temperature annealing (room temperature to 170 °C). As the annealing temperature increased, it was induced that the average separation between nanocrystal quantum dots is decreased, and accordingly, the overall conductivity of the QDS increased exponentially. From a simplified percolation model, the activation energy of temperature-dependent quantum dot attachment was estimated to be around 0.26−0.27 eV both for PbS and PbSe quantum dot solids. Furthermore, the results of this study indicated that device applications requiring higher conductivity, attainable through high-temperature annealing, may also require repassivation after annealing.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp1084668