Galvanostatic Growth of Nanoporous Anodic Films on Iron in Ammonium Fluoride−Ethylene Glycol Electrolytes with Different Water Contents
The growth of porous anodic films on iron has been examined at a constant current density of 50 A m−2 in 0.1 mol L−1 NH4F−ethylene glycol electrolytes containing 0.1−1.5 mol L−1 water. Nanoporous films are formed in all the electrolytes, with the growth rate increasing with the decrease in the water...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2010-11, Vol.114 (44), p.18853-18859 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growth of porous anodic films on iron has been examined at a constant current density of 50 A m−2 in 0.1 mol L−1 NH4F−ethylene glycol electrolytes containing 0.1−1.5 mol L−1 water. Nanoporous films are formed in all the electrolytes, with the growth rate increasing with the decrease in the water content of the electrolyte. A barrier layer, in which a high electric field is applied during anodizing, thickens in proportion to the formation voltage at a ratio of 1.9 nm V−1, regardless of the water content of the electrolyte. However, there is a transition water content between 0.3 and 0.5 mol L−1, at which growth behavior changes. Above the transition level, the formation voltage is constant after an initial voltage rise, with the constant voltage slightly rising with a decrease in water content. In contrast, the formation voltage increases continuously to more than 150 V when the water contents are below the transition level. The anodic films are poorly crystalline and contain a significant amount of fluoride species. A high enrichment of fluoride species occurs near the metal/film interface when the water content in the electrolyte is below the transition level. Such enrichment is not as significant, or possibly absent, in electrolytes of increased water content. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp1078136 |