Study of CO Oxidation on Polycrystalline Pt Electrodes in Acidic Solution by ATR-SEIRAS

Adsorption and electro-oxidation of CO on a polycrystalline Pt electrode in acidic solutions were systematically revisited by in situ attenuated-total-reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) in conjunction with related Gram–Schmidt response analysis. CO was either a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-08, Vol.115 (33), p.16378-16388
Hauptverfasser: Yan, Yan-Gang, Yang, Yao-Yue, Peng, Bin, Malkhandi, Souradip, Bund, Andreas, Stimming, Ulrich, Cai, Wen-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adsorption and electro-oxidation of CO on a polycrystalline Pt electrode in acidic solutions were systematically revisited by in situ attenuated-total-reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) in conjunction with related Gram–Schmidt response analysis. CO was either adsorbed in the double-layer region, i.e., 0.45 V (RHE) (denoted as CO@DL) or in the hydrogen underpotential deposition region, i.e., 0.1 V (RHE) (denoted as CO@UPD). The results indicate that the CO@UPD and H2Ofree coexisted structure (or simply costructure) forms only at a sufficiently high global CO coverage (H2Ofree denotes hydrogen-bonding-broken water); In contrast, the CO@DL and H2Ofree costructure forms in an earlier adsorption phase, less dependent on the global CO coverage. The partial oxidation of CO from solution and weakly adsorbed COL at the active sites is suggested to yield a prepeak that occurs with the relaxation of the COad-H2Ofree costructure and the disorganization of the outer water net layers. In the main oxidation process, the oxidation of CO@UPD tends to proceed via the “mean-field approximation” kinetics due to the high COad mobility resulting from the oxidation prepeak. The oxidation process of CO@DL is, however, likely via the “nucleation and growth” kinetics due to the good stability of the local CO@DL and H2Ofree costructured islands. The H2Ofree can be better assigned to the “probe” of the local COad coverage rather than the main oxygenated species for COad oxidation according to the spectral results for both CO@UPD and CO@DL.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp104181y