Controlling Cross Section of Carbon Nanotubes via Selective Hydrogenation

We systematically studied effects of selective hydrogenation of single-walled carbon nanotube (SWNT) on the shape of tube cross section based on a mechanical relaxation model and ab initio calculations. We found that fully hydrogenated SWNTs (FH-SWNTs) are energetically more favorable than partially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2010-07, Vol.114 (27), p.11753-11757
Hauptverfasser: Wu, Guangfen, Wang, Jinlan, Zeng, Xiao Cheng, Hu, Hong, Ding, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We systematically studied effects of selective hydrogenation of single-walled carbon nanotube (SWNT) on the shape of tube cross section based on a mechanical relaxation model and ab initio calculations. We found that fully hydrogenated SWNTs (FH-SWNTs) are energetically more favorable than partially hydrogenated ones. We uncovered a new channel for the strain relaxation at the nanoscale, in contrast to the known plasticity or buckling channel. We showed that the curvature strain energy of a cylindrical FH-SWNT can be significantly relieved by flipping a few rows of H atoms from outside to inside of the tube. We conclude that selective hydrogenation of SWNTs not only can be an effective way to achieve highly stable configurations of FH-SWNTs but also can be used to control the shape of tube cross section (triangle, square, etc.) for nanomechanic applications.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp102005k