Guest−Host Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response

Some of the most highly active organic electro-optic (EO) materials developed recently rely on the combination of an EO-active (chromophore-containing) host material (dendrimer or side-chain polymer) and an EO-active (chromophore) guest. These new binary-chromophore materials exhibit EO coefficients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2008-03, Vol.112 (11), p.4355-4363
Hauptverfasser: Pereverzev, Yuriy V, Gunnerson, Kim N, Prezhdo, Oleg V, Sullivan, Philip A, Liao, Yi, Olbricht, Benjamin C, Akelaitis, Andrew J. P, Jen, Alex K.-Y, Dalton, Larry R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some of the most highly active organic electro-optic (EO) materials developed recently rely on the combination of an EO-active (chromophore-containing) host material (dendrimer or side-chain polymer) and an EO-active (chromophore) guest. These new binary-chromophore materials exhibit EO coefficients (r 33) in the range of 250 to greater than 300 pm/V (currently as high as 450 pm/V). The EO activity of these binary-chromophore materials is greater the sum of their individual components. The experimentally observed increase in the nonlinear optical response of two representative classes of EO chromophore−EO dendrimer and EO chromophore−EO polymer mixtures relative to the response of the isolated components is described quantitatively herein by a physical model that accounts for cooperativity in the guest−host interactions.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp077194q