Mechanistic Study on Hydrogen Spillover onto Graphitic Carbon Materials

We present a systematic study on the possible mechanisms of hydrogen spillover onto several carbon-based materials using density functional theory (DFT). Adsorption and diffusion of atomic hydrogen on a graphene sheet, single-walled carbon nanotubes, and a polyaromatic compound, hexabenzocoronene, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2007-12, Vol.111 (51), p.18995-19000
Hauptverfasser: Chen, Liang, Cooper, Alan C, Pez, Guido P, Cheng, Hansong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a systematic study on the possible mechanisms of hydrogen spillover onto several carbon-based materials using density functional theory (DFT). Adsorption and diffusion of atomic hydrogen on a graphene sheet, single-walled carbon nanotubes, and a polyaromatic compound, hexabenzocoronene, were calculated, and the potential energies along the selected adsorption and diffusion minimum energy pathways were mapped out. We show that the migration of H atoms from a Pt cluster catalyst to the substrates is facile at ambient conditions with a small energy barrier, although the process is slightly endothermic, and that the H atoms can be either physisorbed or chemisorbed on carbon surfaces. Our results indicate that diffusion of H atoms in a chemisorbed state is energetically difficult since it requires C−H bond breaking and hydrogen spillover would occur likely via physisorption of H atoms. The curvature of the carbon materials is found to have a pronounced influence on the mobility of H atoms. The role of the “bridge” materials used in experiments is also discussed.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp074920g