Thiol-Capped Gold Nanoparticles on Graphite: Spontaneous Adsorption and Electrochemically Induced Release
Gold nanoparticle-(AuNP)-modified carbon graphite surfaces have been prepared by simple immersion of highly oriented pyrolytic graphite (HOPG) in hexane solutions containing 3 nm diameter butanethiol- or nonanethiol-capped nanoparticles. The AuNP adsorb on the HOPG surface free of unbounded thiols,...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2007-05, Vol.111 (19), p.7179-7184 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gold nanoparticle-(AuNP)-modified carbon graphite surfaces have been prepared by simple immersion of highly oriented pyrolytic graphite (HOPG) in hexane solutions containing 3 nm diameter butanethiol- or nonanethiol-capped nanoparticles. The AuNP adsorb on the HOPG surface free of unbounded thiols, remaining unchanged with time. The amount of adsorbed thiol-protected AuNP depends on concentration and time. The reductive desorption of thiols from the AuNP produces an efficient release of more than 90% of the AuNP from the carbon surface to the aqueous solution. The remaining thiol-free Au nanoparticles do not sinter on the HOPG, forming stable and electrochemically active islands. These results could open interesting possibilities for easy transfer of thiol-capped metallic NP from one environment to another, for controlled release of biomolecules from metallic NP, and for the preparation of catalytic or decontamination systems on large area C surfaces. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp071357t |