Fine Morphology of Proton-Conducting Ionomers
The key factors that control the performance of perfluorinated sulfonic acid polymer electrolyte membranes cannot be deeply understood without a structural model of the material. Models of different complexity have been discussed in the literature. In this paper, we suggest a more detailed structura...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2004-08, Vol.108 (32), p.11953-11963 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The key factors that control the performance of perfluorinated sulfonic acid polymer electrolyte membranes cannot be deeply understood without a structural model of the material. Models of different complexity have been discussed in the literature. In this paper, we suggest a more detailed structural model of Nafion-type membranes, which results from a combined analysis of the ionomer molecular structure, data on swelling, small-angle diffraction, and conductivity as a function of water content. The analysis focuses on geometrical constraints on the self-organization of the polymer and possible patterns of phase segregation within it. The model identifies the percolation bottlenecks for proton transport and resolves controversies about the water-content dependence of the activation energy of proton mobility. It also suggests a new framework for molecular dynamics simulations of proton and water transport in such media. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp049687q |