On the Construction of Particle Distributions with Specified Single and Pair Densities

We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2004-12, Vol.108 (51), p.19614-19618
Hauptverfasser: Costin, O, Lebowitz, J. L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19618
container_issue 51
container_start_page 19614
container_title The journal of physical chemistry. B
container_volume 108
creator Costin, O
Lebowitz, J. L
description We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existence of such a point process of renewal (Markov) type. We prove that these conditions are satisfied for the case g(r) = 0, r < D and g(r) = 1, r > D, if and only if ρD ≤ e -1:  the maximum density obtainable from diluting a Poisson process. We then describe briefly necessary and sufficient conditions, valid in every dimension, for ρg(r) to specify a determinantal point process for which all n-particle densities,ρ n (r 1,...,r n ), are given explicitly as determinants. We give several examples.
doi_str_mv 10.1021/jp047793m
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp047793m</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_CXB8H1G7_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-f33fbb26297180b6e0febd525b279486d2a9a8932514478367c6edaa28ea94033</originalsourceid><addsrcrecordid>eNptkMtOAjEUhhujiYgufINuXLgY7WWm7Sx1QDAhgQQ07prOTCtF6JC2RH17SyCsXJyc23f-5D8A3GL0gBHBj6styjkv6eYM9HBBUJaCnx9rhhG7BFchrBAiBRGsB96nDsalhlXnQvS7JtrOwc7AmfLRNmsNBzbNbb3bLwL8tnEJ51vdWGN1C-fWfSZGuTYdWA8H2gUbrQ7X4MKoddA3x9wHby_DRTXOJtPRa_U0yRQpecwMpaauCUsNFqhmGhldtwUpasLLXLCWqFKJkpIC5zkXlPGG6VYpIrQqc0RpH9wfdBvfheC1kVtvN8r_Sozk_iHy9JDEZgc2OdI_J1D5L8k45YVczOay-ngWYzzikif-7sCrJshVt_MuOflH9w_52m5J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Construction of Particle Distributions with Specified Single and Pair Densities</title><source>ACS Publications</source><creator>Costin, O ; Lebowitz, J. L</creator><creatorcontrib>Costin, O ; Lebowitz, J. L</creatorcontrib><description>We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existence of such a point process of renewal (Markov) type. We prove that these conditions are satisfied for the case g(r) = 0, r &lt; D and g(r) = 1, r &gt; D, if and only if ρD ≤ e -1:  the maximum density obtainable from diluting a Poisson process. We then describe briefly necessary and sufficient conditions, valid in every dimension, for ρg(r) to specify a determinantal point process for which all n-particle densities,ρ n (r 1,...,r n ), are given explicitly as determinants. We give several examples.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp047793m</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2004-12, Vol.108 (51), p.19614-19618</ispartof><rights>Copyright © 2004 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a297t-f33fbb26297180b6e0febd525b279486d2a9a8932514478367c6edaa28ea94033</citedby><cites>FETCH-LOGICAL-a297t-f33fbb26297180b6e0febd525b279486d2a9a8932514478367c6edaa28ea94033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp047793m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp047793m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Costin, O</creatorcontrib><creatorcontrib>Lebowitz, J. L</creatorcontrib><title>On the Construction of Particle Distributions with Specified Single and Pair Densities</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existence of such a point process of renewal (Markov) type. We prove that these conditions are satisfied for the case g(r) = 0, r &lt; D and g(r) = 1, r &gt; D, if and only if ρD ≤ e -1:  the maximum density obtainable from diluting a Poisson process. We then describe briefly necessary and sufficient conditions, valid in every dimension, for ρg(r) to specify a determinantal point process for which all n-particle densities,ρ n (r 1,...,r n ), are given explicitly as determinants. We give several examples.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkMtOAjEUhhujiYgufINuXLgY7WWm7Sx1QDAhgQQ07prOTCtF6JC2RH17SyCsXJyc23f-5D8A3GL0gBHBj6styjkv6eYM9HBBUJaCnx9rhhG7BFchrBAiBRGsB96nDsalhlXnQvS7JtrOwc7AmfLRNmsNBzbNbb3bLwL8tnEJ51vdWGN1C-fWfSZGuTYdWA8H2gUbrQ7X4MKoddA3x9wHby_DRTXOJtPRa_U0yRQpecwMpaauCUsNFqhmGhldtwUpasLLXLCWqFKJkpIC5zkXlPGG6VYpIrQqc0RpH9wfdBvfheC1kVtvN8r_Sozk_iHy9JDEZgc2OdI_J1D5L8k45YVczOay-ngWYzzikif-7sCrJshVt_MuOflH9w_52m5J</recordid><startdate>20041223</startdate><enddate>20041223</enddate><creator>Costin, O</creator><creator>Lebowitz, J. L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20041223</creationdate><title>On the Construction of Particle Distributions with Specified Single and Pair Densities</title><author>Costin, O ; Lebowitz, J. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-f33fbb26297180b6e0febd525b279486d2a9a8932514478367c6edaa28ea94033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costin, O</creatorcontrib><creatorcontrib>Lebowitz, J. L</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costin, O</au><au>Lebowitz, J. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Construction of Particle Distributions with Specified Single and Pair Densities</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2004-12-23</date><risdate>2004</risdate><volume>108</volume><issue>51</issue><spage>19614</spage><epage>19618</epage><pages>19614-19618</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existence of such a point process of renewal (Markov) type. We prove that these conditions are satisfied for the case g(r) = 0, r &lt; D and g(r) = 1, r &gt; D, if and only if ρD ≤ e -1:  the maximum density obtainable from diluting a Poisson process. We then describe briefly necessary and sufficient conditions, valid in every dimension, for ρg(r) to specify a determinantal point process for which all n-particle densities,ρ n (r 1,...,r n ), are given explicitly as determinants. We give several examples.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp047793m</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2004-12, Vol.108 (51), p.19614-19618
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp047793m
source ACS Publications
title On the Construction of Particle Distributions with Specified Single and Pair Densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Construction%20of%20Particle%20Distributions%20with%20Specified%20Single%20and%20Pair%20Densities&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Costin,%20O&rft.date=2004-12-23&rft.volume=108&rft.issue=51&rft.spage=19614&rft.epage=19618&rft.pages=19614-19618&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp047793m&rft_dat=%3Cistex_cross%3Eark_67375_TPS_CXB8H1G7_7%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true