On the Construction of Particle Distributions with Specified Single and Pair Densities

We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2004-12, Vol.108 (51), p.19614-19618
Hauptverfasser: Costin, O, Lebowitz, J. L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existence of such a point process of renewal (Markov) type. We prove that these conditions are satisfied for the case g(r) = 0, r < D and g(r) = 1, r > D, if and only if ρD ≤ e -1:  the maximum density obtainable from diluting a Poisson process. We then describe briefly necessary and sufficient conditions, valid in every dimension, for ρg(r) to specify a determinantal point process for which all n-particle densities,ρ n (r 1,...,r n ), are given explicitly as determinants. We give several examples.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp047793m