On the Construction of Particle Distributions with Specified Single and Pair Densities
We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existenc...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2004-12, Vol.108 (51), p.19614-19618 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density ρ and radial distribution function g(r). In d = 1 we give necessary and sufficient criteria on ρg(r) for the existence of such a point process of renewal (Markov) type. We prove that these conditions are satisfied for the case g(r) = 0, r < D and g(r) = 1, r > D, if and only if ρD ≤ e -1: the maximum density obtainable from diluting a Poisson process. We then describe briefly necessary and sufficient conditions, valid in every dimension, for ρg(r) to specify a determinantal point process for which all n-particle densities,ρ n (r 1,...,r n ), are given explicitly as determinants. We give several examples. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp047793m |