Resonance Raman Characterization of Proteorhodopsin's Chromophore Environment

Proteorhodopsin (pR) is a bacteriorhodopsin (bR) homologue, recently discovered in oceanic bacterioplankton, which functions as a light-driven proton pump. Resonance Raman spectra of pR excited with 532-nm light indicate that there are two subpopulations of pR within the sample solubilized in octylg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2003-08, Vol.107 (31), p.7877-7883
Hauptverfasser: Krebs, Richard A, Dunmire, David, Partha, Ranga, Braiman, Mark S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteorhodopsin (pR) is a bacteriorhodopsin (bR) homologue, recently discovered in oceanic bacterioplankton, which functions as a light-driven proton pump. Resonance Raman spectra of pR excited with 532-nm light indicate that there are two subpopulations of pR within the sample solubilized in octylglucoside detergent and maintained in a light-adapted state in a spinning Raman cell. The subpopulations exhibit two distinct chromophore environments, as evidenced by two sets of split peaks, 1642/1655 cm-1 (corresponding to the Schiff base υC  N vibration) and 1244/1252 cm-1 (corresponding to a retinylidene−lysine N−C−H rock). These populations most likely arise either from different post-translational modifications of the heterologously expressed protein or from a mixture of retinal isomers (all-trans and 13-cis) that was previously reported to be present in light-adapted pR in a 60:40 ratio. However, the latter possibility seems at odds with the resonance Raman fingerprint spectral patterns in both natural-abundance and 15-2H-retinal-subsituted pR, which are consistent with an all-trans chromophore configuration similar to that of light-adapted bR.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp034574c