Interaction between Catalyst and Support. 2. Low Coverage of Co and Ni at the Alumina Surface

The electronic and geometric structure of α-Al2O3 (0001) surface with and without adsorbed Co and Ni atoms has been investigated using the full-potential linearized augmented plane-wave density-functional theory method. It has been found that the truncated α-Al2O3 (0001) surface undergoes a large su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2001-03, Vol.105 (11), p.2212-2221
Hauptverfasser: Ma, Qisheng, Klier, Kamil, Cheng, Hansong, Mitchell, John W, Hayes, Kathryn S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electronic and geometric structure of α-Al2O3 (0001) surface with and without adsorbed Co and Ni atoms has been investigated using the full-potential linearized augmented plane-wave density-functional theory method. It has been found that the truncated α-Al2O3 (0001) surface undergoes a large surface reconstruction from its bulk structure, which is further changed upon the metal atom adsorption. Geometries, energies, and electronic properties of the partially optimized and the truncated undistorted α-Al2O3 slabs are compared. Electronic “surface state levels” due to the unsatisfied bonding of the Al atoms at both ends of the slab are identified. Among several geometries, the 3-fold oxygen site has been found to be the only stable adsorption site for both Co and Ni atoms. Several factors determine the metal−support interaction between the Co (or Ni) atom and the α-Al2O3 substrate. Among these factors, the “screened ligand field” effects of partially occupied 3d electrons and the further relaxation of the α-Al2O3 substrate are shown to have the largest contributions to the adsorption energy.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp003673c