Reaction of Hydroxyl Radical with Nitric Acid:  Insights into Its Mechanism

The rate constant for the reaction of hydroxyl radicals with nitric acid has an unusual pressure and temperature dependence. To explore the mechanism for this reaction, we have measured rate constants for reactions of isotopically substituted species OD + DNO3, OH + DNO3, OD + HNO3, and 18OH + HNO3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2001-03, Vol.105 (9), p.1605-1614
Hauptverfasser: Brown, Steven S, Burkholder, James B, Talukdar, Ranajit K, Ravishankara, A. R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rate constant for the reaction of hydroxyl radicals with nitric acid has an unusual pressure and temperature dependence. To explore the mechanism for this reaction, we have measured rate constants for reactions of isotopically substituted species OD + DNO3, OH + DNO3, OD + HNO3, and 18OH + HNO3 and the yield of NO3 product. Deuterium substitution on nitric acid results in more than a 10-fold reduction in the rate constant, removes the pressure dependence (over the observed range of 20−200 Torr in He and SF6), and leads to a strongly curved Arrhenius temperature dependence. Deuterium substitution on hydroxyl increases the rate constant slightly but does not change the pressure dependence. There is no evidence for exchange reactions in the isotopically mixed reactions. Absorption measurements of the NO3 product yield show that the title reaction produces nitrate radical with unit efficiency over all temperatures and pressures studied. We discuss the implications of the measured rate constants, product yields, and lack of isotopic exchange in terms of a mechanism that involves formation of a hydroxyl radical−nitric acid complex and its subsequent reaction to give NO3 and H2O.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp002394m