Antimalarial Alkoxylated and Hydroxylated Chalones:  Structure−Activity Relationship Analysis

Chalcones with 2‘,3‘,4‘-trimethoxy, 2‘,4‘-dimethoxy, 4‘-methoxy, 4‘-ethoxy, 2‘,4‘-dihydroxy, and 4‘-hydroxy groups on ring B were synthesized and evaluated in vitro against Plasmodium falciparum (K1) in a [3H] hypoxanthine uptake assay. The other ring A was quinoline, pyridine, naphthalene, or pheny...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2001-12, Vol.44 (25), p.4443-4452
Hauptverfasser: Liu, Mei, Wilairat, Prapon, Go, Mei-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chalcones with 2‘,3‘,4‘-trimethoxy, 2‘,4‘-dimethoxy, 4‘-methoxy, 4‘-ethoxy, 2‘,4‘-dihydroxy, and 4‘-hydroxy groups on ring B were synthesized and evaluated in vitro against Plasmodium falciparum (K1) in a [3H] hypoxanthine uptake assay. The other ring A was quinoline, pyridine, naphthalene, or phenyl rings with electron-donating or electron-withdrawing substituents of varying lipophilicities. Trimethoxy 6 and 27, dimethoxy 7, 8, 29, and methoxy 31 analogues had good in vitro activities (IC50 < 5 μM). 3-Quinolinyl ring A derivatives were well represented among the active compounds. Hydroxylated chalcones were less active than the corresponding alkoxylated analogues. When evaluated in vivo, 8 and 208 were comparable to chloroquine in extending the lifespan of infected mice. Multivariate data analysis showed that in vitro activity was mainly determined by the properties of ring B. Quantitative structure−activity relationship models with satisfactory predictive ability were obtained for various B ring chalcones using projections to latent structures. A model with good predictability was proposed for 19 active chalcones. Size and hydrophobicity were identified as critical parameters.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm0101747