Lubricant Base Stock Potential of Chemically Modified Vegetable Oils

The environment must be protected against pollution caused by lubricants based on petroleum oils. The pollution problem is so severe that approximately 50% of all lubricants sold worldwide end up in the environment via volatility, spills, or total loss applications. This threat to the environment ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2008-10, Vol.56 (19), p.8919-8925
Hauptverfasser: Erhan, Sevim Z, Sharma, Brajendra K, Liu, Zengshe, Adhvaryu, Atanu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The environment must be protected against pollution caused by lubricants based on petroleum oils. The pollution problem is so severe that approximately 50% of all lubricants sold worldwide end up in the environment via volatility, spills, or total loss applications. This threat to the environment can be avoided by either preventing undesirable losses, reclaiming and recycling mineral oil lubricants, or using environmentally friendly lubricants. Vegetable oils are recognized as rapidly biodegradable and are thus promising candidates as base fluids in environment friendly lubricants. Lubricants based on vegetable oils display excellent tribological properties, high viscosity indices, and flash points. To compete with mineral-oil-based lubricants, some of their inherent disadvantages, such as poor oxidation and low-temperature stability, must be corrected. One way to address these problems is chemical modification of vegetable oils at the sites of unsaturation. After a one-step chemical modification, the chemically modified soybean oil derivatives were studied for thermo-oxidative stability using pressurized differential scanning calorimetry and a thin-film micro-oxidation test, low-temperature fluid properties using pour-point measurements, and friction-wear properties using four-ball and ball-on-disk configurations. The lubricants formulated with chemically modified soybean oil derivatives exhibit superior low-temperature flow properties, improved thermo-oxidative stability, and better friction and wear properties. The chemically modified soybean oil derivatives having diester substitution at the sites of unsaturation have potential in the formulation of industrial lubricants.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf801463d