Purification and Partial Characterization of an Acid Phosphatase from Spirodela oligorrhiza and Its Affinity for Selected Organophosphate Pesticides

An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. Sodium dodecyl sulfate−polyacrylamide gel electrophoresis (SDS−PAGE) of the pure ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2005-01, Vol.53 (1), p.90-97
Hauptverfasser: Hoehamer, Christopher F, Mazur, Chris S, Wolfe, N. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. Sodium dodecyl sulfate−polyacrylamide gel electrophoresis (SDS−PAGE) of the pure acid phosphatase resolved a single protein band that migrated to approximately 60 kDa. Nondenaturing SDS−PAGE electrophoresis revealed a single protein band around 120 kDa after staining with Coomassie Brilliant blue. Quantitative gel filtration chromatography estimated a native molecular mass of this enzyme to be 120 kDa. Thus, this acid phosphatase likely functions as a homodimer, consisting of two similar 60 kDa subunits. An electrophoretic technique using the flourogenic substrate 4-methylumbelliferyl phosphate enabled visualization of an acid phosphatase activity that corresponded to the protein band at 120 kDa on a nondenaturing PAGE gel. It was determined that the acid phosphatase had a pH optimum of 6.0 at 25 °C. The enzyme activity appeared to be stable over a broad range of temperatures (10−40 °C) and in the presence of the metals Zn2+, Mn2+, and Mg2+ as well as the chelating agents ethylenedinitrilotetraacetic acid and ethylene glycol tetraacetic acid. It was shown that this acid phosphatase could hydrolyze a variety of physiological organophosphate compounds including β-glycerophosphate, phosphoserine, adenosine triphosphate, adenosine diphosphate, adenosine monphosphate, and pyrophosphate. Furthermore, analysis using capillary electrophoresis demonstrated that this hydrolytic enzyme could transform a wide array of organophosphate pesticides including S-2-ethylthioethyl O,O-dimethylphosphorothioate (demeton-S-methyl); S-1,2-bis(ethoxycarbonyl)ethyl O,O-dimethylphosphorodithioate (malathion); O,O-dimethyl O-4-nitrophenyl (paraoxon); O,O,O,O-tetraethyldithiopyrophosphate (sulfatep); O-2-chloro-4-nitrophenyl O,O-dimethylphosphorothioate (dicapthon); and 2,2-dichlorovinyl dimethylphosphate (dichlorvos). Keywords: Acid phosphatase; organophosphates; phytometabolism; duckweed; Spirodela oligorrhiza
ISSN:0021-8561
1520-5118
DOI:10.1021/jf040329u