Dihydropiperazine Neonicotinoid Compounds. Synthesis and Insecticidal Activity
Syntheses of various isomeric dihydropiperazines can be approached successfully by taking advantage of the regioselective monothionation of their respective diones. Preparation of the precursor unsymmetrical N-substituted piperazinediones from readily available diamines is key to this selectivity. T...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2003-05, Vol.51 (10), p.3035-3042 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Syntheses of various isomeric dihydropiperazines can be approached successfully by taking advantage of the regioselective monothionation of their respective diones. Preparation of the precursor unsymmetrical N-substituted piperazinediones from readily available diamines is key to this selectivity. The dihydropiperazine ring system, as exemplified in 1-[(6-chloropyridin-3-yl)methyl]-4-methyl-3-oxopiperazin-2-ylidenecyanamide (4) and 1-[(2-chloro-1,3-thiazol-5-yl)methyl]-4-methyl-3-oxopiperazin-2-ylidenecyanamide (25), has been shown to be a suitable bioisosteric replacement for the imidazolidine ring system contained in neonicotinoid compounds. However, placement of the cyanoimino electron-withdrawing group further removed from the pyridine ring, as in 4-[(6-chloropyridin-3-yl)methyl]-3-oxopiperazin-2-ylidenecyanamide (3a), or relocation of the carbonyl group, as in 1-[(6-chloropyridin-3-yl)methyl]-4-methyl-5-oxopiperazin-2-ylidenecyanamide (5), results in significantly decreased bioisosterism. The dihydropiperazine ring system of 4 and 25 also lends a degree of rigidity to the molecule that is not offered by the inactive acyclic counterpart 2-[(6-chloropyridin-3-yl)-methyl-(methyl)amino]-2-(cyanoimino)-N,N-dimethylacetamide (6). A pharmacophore model is proposed that qualitatively explains the results on the basis of good overlap of the key pharmacophore elements of 4 and imidacloprid (1); the less active regioisomers of 4 (3a, 5, and 6) feature a smaller degree of overlap. Keywords: Dihydropiperazine; neonicotinoid; synthesis; molecular modeling; pharmacophore; nicotinic acetylcholine receptor; bioisosterism; cotton aphid |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf021185r |