Temperature Dependence of Limiting Activity Coefficients, Henry's Law Constants, and Related Infinite Dilution Properties of Branched (C3 and C4) Alkanols in Water. Measurement, Critical Compilation, Correlation, and Recommended Data

Limiting activity coefficients ( ) of lower branched alkanols (2-propanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2-propanol) in water were measured at several temperatures covering the range from the melting to the normal boiling point of water. Four experimental techniques (namely, headspace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical and engineering data 2007-05, Vol.52 (3), p.989-1002
Hauptverfasser: Fenclová, Dana, Dohnal, Vladimír, Vrbka, Pavel, Laštovka, Václav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Limiting activity coefficients ( ) of lower branched alkanols (2-propanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2-propanol) in water were measured at several temperatures covering the range from the melting to the normal boiling point of water. Four experimental techniques (namely, headspace analysis, inert gas stripping, Rayleigh distillation, and the method of circulation still) were employed for the purpose. A comprehensive review is further presented of experimental data on the limiting activity coefficients ( ), infinite dilution partial molar excess enthalpies ( ), and heat capacities ( ) of these aqueous solutes. For each alkanol, the compiled data were critically evaluated and together with the data measured in this work correlated with a suitable model equation providing adequate simultaneous description of the equilibrium measurements and the calorimetric information. As a result, a recommended thermodynamically consistent temperature dependence of , , and of superior accuracy was established in the range from the melting point to the normal boiling point of water. In addition, by employing literature data on the respective residual properties of the pure alkanols, analogous recommendations were derived also for the temperature dependence of the Henry's law constants, hydration enthalpies, and hydration heat capacities. Variation of these various infinite dilution thermodynamic properties of aqueous branched alkanols with temperature and alkanol branching is briefly discussed.
ISSN:0021-9568
1520-5134
DOI:10.1021/je600567z