Intradiffusion, Density, and Viscosity Studies in Binary Liquid Systems of Acetylacetone + Alkanols at 303.15 K
Intradiffusion coefficients of acetylacetone (AcAc) and methanol/ethanol/1-propanol/1-butanol were measured in binary liquid mixtures over the whole concentration range at 303.15 K by the 1H diffusion-order spectroscopy (DOSY) nuclear magnetic resonance (NMR) method based pulse field gradient (PFG)....
Gespeichert in:
Veröffentlicht in: | Journal of chemical and engineering data 2012-09, Vol.57 (9), p.2401-2408 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intradiffusion coefficients of acetylacetone (AcAc) and methanol/ethanol/1-propanol/1-butanol were measured in binary liquid mixtures over the whole concentration range at 303.15 K by the 1H diffusion-order spectroscopy (DOSY) nuclear magnetic resonance (NMR) method based pulse field gradient (PFG). The solvent effect on the enol-keto tautomeric equilibrium as well as differences in intradiffusion coefficients (D) between two tautomers were also studied. The experimental results show that from methanol to 1-butanol, the differences in D between the enol and keto tautomer vary from 5 % to 26 % at different concentrations of AcAc. The densities and viscosities of binary liquid mixtures of AcAc with the above four alkanols have also been determined at 303.15 K and employed to calculate the excess molar volumes and deviations in viscosity over the entire range of mole fractions. Isotherms of V E as a function of mole fraction of AcAc show positive deviations in methanol and ethanol but negative deviations in 1-propanol and 1-butanol, whereas all isotherms of Δη as a function of mole fraction of AcAc record negative deviations. The V E and Δη are fitted to a Redich–Kister type equation. The measured results are interpreted in terms of molecular interactions in the solutions. |
---|---|
ISSN: | 0021-9568 1520-5134 |
DOI: | 10.1021/je3000553 |