Prediction of Prop-2-enoate Polymer and Styrene Polymer Glass Transition Using Artificial Neural Networks

In this article, the molecular average polarizability α, the energy of the highest occupied molecular orbital E HOMO, the total thermal energy E thermal, and the total entropy S were used to correlate with the glass transition temperature T g for 113 polymers. The quantum chemical descriptors obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical and engineering data 2010-11, Vol.55 (11), p.5340-5346
Hauptverfasser: Astray, G, Cid, A, Ferreiro-Lage, J. A, Gálvez, J. F, Mejuto, J. C, Nieto-Faza, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the molecular average polarizability α, the energy of the highest occupied molecular orbital E HOMO, the total thermal energy E thermal, and the total entropy S were used to correlate with the glass transition temperature T g for 113 polymers. The quantum chemical descriptors obtained directly from polymer monomers can represent the essential factors that are governing the nature of glass transition in polymers. Stepwise multiple linear regression (MLR) analysis and the back-propagation artificial neural network (ANN) were used to generate the model. The final optimum neural network with 4-[4-4-1]3-1 structure produced a training set root-mean-square error (RMSE) of 11 K (R = 0.973) and a validation set RMSE of 17 K (R = 0.955). The results show that the ANN model obtained in this paper is accurate in the prediction of T g values for polymers.
ISSN:0021-9568
1520-5134
DOI:10.1021/je100573n