Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials

Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-06, Vol.138 (24), p.7733-7740
Hauptverfasser: Wang, Pengfei, Gaitanaros, Stavros, Lee, Seungwoo, Bathe, Mark, Shih, William M, Ke, Yonggang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, here we design a family of hexagonal DNA-origami tiles using computer-aided design and demonstrate successful self-assembly of micrometer-scale 2D honeycomb lattices and tubes by controlling their geometric and mechanical properties including their interconnecting strands. Our results offer insight into programmed self-assembly of low-defect supra-molecular DNA-origami 2D lattices and tubes. In addition, we demonstrate that these DNA-origami hexagon tiles and honeycomb lattices are versatile platforms for assembling optical metamaterials via programmable spatial arrangement of gold nanoparticles (AuNPs) into cluster and superlattice geometries.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.6b03966