Tracking Water Dissociation on RuO 2 (110) Using Atomic Force Microscopy and First-Principles Simulations

The interaction between interfacial water and transition metal oxides is a primary enabling step for the oxygen evolution reaction (OER). RuO is a prototypical OER electrocatalyst whose ability to activate interfacial water molecules is essential to its OER activity. We image the dissociation of sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-11, Vol.146 (46), p.32080-32087
Hauptverfasser: Reese, Austin J, Gelin, Simon, Maalouf, Maria, Wadehra, Neha, Zhang, Lei, Hautier, Geoffroy, Schlom, Darrell G, Dabo, Ismaila, Suntivich, Jin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction between interfacial water and transition metal oxides is a primary enabling step for the oxygen evolution reaction (OER). RuO is a prototypical OER electrocatalyst whose ability to activate interfacial water molecules is essential to its OER activity. We image the dissociation of surface water into OH* and O* on RuO (110), where * denotes adsorbed species, using atomic force microscopy. Starting from the surface-bound water molecules, which form a one-dimensional network along the rows of Ru surface sites, increasing the oxidative potential strips hydrogen away and transforms the water molecules into OH* and O*. This oxidative step changes the pattern of the adsorbates from one- to two-dimensional. First-principles calculations with interfacial polarization, capacitive charging, and adsorbate interactions attribute this evolution to the cooperative dehydrogenation of adsorbed water and OH* on RuO . We use these results to map the surface phase diagram of RuO (110) and provide a quantitative interpretation of its cyclic voltammetry. Our result provides the visualization of the water dissociation on a conductive oxide surface, a critical step in the OER, and demonstrates that the water activation is a collective phenomenon at RuO (110) electrodes.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.4c13164