Substoichiometric 3D Covalent Organic Frameworks Based on Hexagonal Linkers

Covalent organic frameworks (COFs), a fast-growing field in crystalline porous materials, have achieved tremendous success in structure development and application exploration over the past decade. The vast majority of COFs reported to date are designed according to the basic concept of reticular ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-07, Vol.143 (27), p.10243-10249
Hauptverfasser: Chen, Liangjun, Gong, Chengtao, Wang, Xiaokang, Dai, Fangna, Huang, Mingchu, Wu, Xiaowei, Lu, Can-Zhong, Peng, Yongwu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covalent organic frameworks (COFs), a fast-growing field in crystalline porous materials, have achieved tremendous success in structure development and application exploration over the past decade. The vast majority of COFs reported to date are designed according to the basic concept of reticular chemistry, which is rooted in the idea that building blocks are fully connected within the frameworks. We demonstrate here that sub-stoichiometric construction of 2D/3D COFs can be accomplished by the condensation of a hexagonal linker with 4-connected building units. It is worth noting that the partially connected frameworks were successfully reticulated for 3D COFs for the first time, representing the highest BET surface area among imine-linked 3D COFs to data. The unreacted benzaldehydes in COF frameworks can enhance C2H2 and CO2 adsorption capacity and selectivities between C2H2/CH4 and C2H2/CO2 for sub-stoichiometric 2D COFs, while the reserved benzaldehydes control the interpenetrated architectures for the 3D case, achieving a rare non-interpenetrated pts topology for 3D COFs. This work not only paves a new avenue to build new COFs and endows residual function groups with further applications but also prompts redetermination of reticular frameworks in highly connected and symmetrical COFs.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.1c03739