Structural Insights into the Mechanism of the Radical SAM Carbide Synthase NifB, a Key Nitrogenase Cofactor Maturating Enzyme

Nitrogenase is a key player in the global nitrogen cycle, as it catalyzes the reduction of dinitrogen into ammonia. The active site of the nitrogenase MoFe protein corresponds to a [MoFe7S9C-(R)-homocitrate] species designated FeMo-cofactor, whose biosynthesis and insertion requires the action of ov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-06, Vol.142 (25), p.11006-11012
Hauptverfasser: Fajardo, Ana Sosa, Legrand, Pierre, Payá-Tormo, Lucı́a, Martin, Lydie, Pellicer Martı́nez, Maria Teresa, Echavarri-Erasun, Carlos, Vernède, Xavier, Rubio, Luis M, Nicolet, Yvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogenase is a key player in the global nitrogen cycle, as it catalyzes the reduction of dinitrogen into ammonia. The active site of the nitrogenase MoFe protein corresponds to a [MoFe7S9C-(R)-homocitrate] species designated FeMo-cofactor, whose biosynthesis and insertion requires the action of over a dozen maturation proteins provided by the NIF (for NItrogen Fixation) assembly machinery. Among them, the radical SAM protein NifB plays an essential role, concomitantly inserting a carbide ion and coupling two [Fe4S4] clusters to form a [Fe8S9C] precursor called NifB-co. Here we report on the X-ray structure of NifB from Methanotrix thermoacetophila at 1.95 Å resolution in a state pending the binding of one [Fe4S4] cluster substrate. The overall NifB architecture indicates that this enzyme has a single SAM binding site, which at this stage is occupied by cysteine residue 62. The structure reveals a unique ligand binding mode for the K1-cluster involving cysteine residues 29 and 128 in addition to histidine 42 and glutamate 65. The latter, together with cysteine 62, belongs to a loop inserted in the active site, likely protecting the already present [Fe4S4] clusters. These two residues regulate the sequence of events, controlling SAM dual reactivity and preventing unwanted radical-based chemistry before the K2 [Fe4S4] cluster substrate is loaded into the protein. The location of the K1-cluster, too far away from the SAM binding site, supports a mechanism in which the K2-cluster is the site of methylation.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c02243