New Phototriggers 9:  p-Hydroxyphenacyl as a C-Terminal Photoremovable Protecting Group for Oligopeptides

In our search for a more versatile protecting group that would exhibit fast release rates for peptides, we have designed and developed the p-hydroxyphenacyl (pHP) group as a new photoremovable protecting group. We report the application of this protecting group for the dipeptide Ala-Ala (1) and for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2000-03, Vol.122 (12), p.2687-2697
Hauptverfasser: Givens, Richard S, Weber, Jörg F. W, Conrad, Peter G, Orosz, György, Donahue, Sarah L, Thayer, Stanley A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In our search for a more versatile protecting group that would exhibit fast release rates for peptides, we have designed and developed the p-hydroxyphenacyl (pHP) group as a new photoremovable protecting group. We report the application of this protecting group for the dipeptide Ala-Ala (1) and for the nonapeptide bradykinin (2), two representative peptides that demonstrate C-terminus “caging” and photorelease. The synthesis of these p-hydroxyphenacyl esters was accomplished in good yields by DBU-catalyzed displacement of bromide from p-hydroxyphenacyl bromide. As in the case of caged γ-amino acids 11 (pHP glu) and 12 (pHP GABA) and caged nucleotide 17 (pHP ATP) reported earlier, , irradiations of the p-hydroxyphenacyl esters of 1 and 2 actuate the release of the peptides with rate constants that are consistently greater than 108 s-1 and appearance efficiencies (Φapp) that range from 0.1 to 0.3. Release of the substrate is accompanied by a deep-seated rearrangement of the protecting group into the near-UV silent p-hydroxyphenylacetic acid (6). Quenching studies of pHP Ala-Ala (7) with either sodium 2-naphthalenesulfonate or potassium sorbate gave good Stern−Volmer kinetics yielding a rate constant for release of 1.82 × 108 s-1. Quenching of the phosphorescence emission from pHP Ala-Ala (7, E T = 70.1 kcal/mol) and pHP GABA (12, E T = 68.9 kcal/mol) were also observed. The biological efficacy of bradykinin released from pHP bradykinin (9) was examined on single rat sensory neurons grown in tissue culture. A single 337 nm flash (
ISSN:0002-7863
1520-5126
DOI:10.1021/ja991014b