Studies on the Dynamics of Phosphorylated p-tert-Butylcalix[6]arenes by Using 2D NMR Spectroscopy
The overall dynamics of partially phosphorylated and thiophosphorylated p-tert-butylcalix[6]arenes has been studied by NMR spectroscopy. When p-tert-butylcalix[6]arene is monosubstituted with a phosphate or thiophosphate group, the calix[6]arene skeleton is remarkably rigidified. The 1,3- and 1,4-(t...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 1996-04, Vol.118 (15), p.3666-3675 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The overall dynamics of partially phosphorylated and thiophosphorylated p-tert-butylcalix[6]arenes has been studied by NMR spectroscopy. When p-tert-butylcalix[6]arene is monosubstituted with a phosphate or thiophosphate group, the calix[6]arene skeleton is remarkably rigidified. The 1,3- and 1,4-(thio)phosphorylated p-tert-butylcalix[6]arenes are more flexible. 2D NMR spectroscopy showed that these calix[6]arenes adopt syn conformations. A combination of 1H and 31P NMR spectroscopy revealed that the calix[6]arene (thio)phosphates are involved in at least three dynamic processes, viz., macrocyclic ring interconversion, hydrogen bond array reversal, and pinched conformer interconversion. The activation barrier (ΔG m ⧧) for macrocyclic ring interconversion depends on the type and number of substituents and ranges from 67 to 86 kJ·mol-1. The activation barrier (ΔG h ⧧) for hydrogen bond array reversal depends on the number of hydroxyl groups and ranges from 31 to 45 kJ·mol-1. For the pinched conformer interconversion an activation barrier (ΔG p ⧧) ranging from 44 to 55 kJ·mol-1 was found. Pinched conformations have been frequently observed in the solid state, for example, for mono- and 1,4-bis(thiophosphorylated) p-tert-butylcalix[6]arene. These studies, however, show for the first time that these conformations also exist in solution and that differently pinched conformers may rapidly interconvert. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja9540942 |