A New Nanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced Enzymatic Performance
We report a rational design of CaHPO4-α-amylase hybrid nanobiocatalytic system based on allosteric effect and an explanation of the increase in catalytic activity when certain enzymes are immobilized in specific nanomaterials. Employing a calcification approach in aqueous solutions, we acquired such...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2013-01, Vol.135 (4), p.1272-1275 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a rational design of CaHPO4-α-amylase hybrid nanobiocatalytic system based on allosteric effect and an explanation of the increase in catalytic activity when certain enzymes are immobilized in specific nanomaterials. Employing a calcification approach in aqueous solutions, we acquired such new nanobiocatalytic systems with three different morphologies, i.e., nanoflowers, nanoplates, and parallel hexahedrons. Through studying enzymatic performance of these systems and free α-amylase with/without Ca2+, we demonstrated how two factors, allosteric regulation and morphology of the as-synthesized nanostructures, predominantly influence enzymatic activity. Benefiting from both the allosteric modulation and its hierarchical structure, CaHPO4-α-amylase hybrid nanoflowers exhibited dramatically enhanced enzymatic activity. As a bonus, the new system we devised was found to enjoy higher stability and durability than free α-amylase plus Ca2+. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja3120136 |