An Effective Friedel−Crafts Postfunctionalization of Poly(N-vinylcarbazole) to Tune Carrier Transportation of Supramolecular Organic Semiconductors Based on π-Stacked Polymers for Nonvolatile Flash Memory Cell
Poly(N-vinylcarbazole) (PVK) and its derivatives are π-stacked polymers of the most important supramolecular organic semiconductors (SOSs), in which semiconducting features are originated from intra-supramolecular interactions. An effective Friedel−Crafts method has been developed to postfunctionali...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2008-02, Vol.130 (7), p.2120-2121 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(N-vinylcarbazole) (PVK) and its derivatives are π-stacked polymers of the most important supramolecular organic semiconductors (SOSs), in which semiconducting features are originated from intra-supramolecular interactions. An effective Friedel−Crafts method has been developed to postfunctionalize PVK to a PVK−PF SOS and to tune the fundamental electronic structures and transporting properties of the resulting SOS. Stable nonvolatile flash memory effect from the SOS has been demonstrated in an ITO/PVK−PF/metal sandwich device. The device exhibited an ON/OFF current ratio up to 104, and writing/erasing voltages around +2.2/−2.0 V, respectively. The unique electrical bistability can be attributed to the ordering alignment effect induced by electric field and the hindrance effect arisen from bulky moieties. Thus, PVK-containing complicated 9,9-diarylfluorenes (CDAFs) are promising materials for information storage applications. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja076720o |