Single Molecular Multianalyte (Ca2+, Mg2+) Fluorescent Probe and Applications to Bioimaging

Intracellular signal transduction relies on spatial and temporal signal transmitter dynamics. To clarify the correlations of these transmitter molecules, multicolor-imaging has been widely used. However, in the case of applying multiple indicators in a cell, spectral overlap of the indicators preven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2005-08, Vol.127 (31), p.10798-10799
Hauptverfasser: Komatsu, Hirokazu, Miki, Takahiro, Citterio, Daniel, Kubota, Takeshi, Shindo, Yutaka, Kitamura, Yoshiichiro, Oka, Kotaro, Suzuki, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intracellular signal transduction relies on spatial and temporal signal transmitter dynamics. To clarify the correlations of these transmitter molecules, multicolor-imaging has been widely used. However, in the case of applying multiple indicators in a cell, spectral overlap of the indicators prevents accurate quantitative analysis. Moreover, the invasive (toxic) effect, the localization, the metabolism, as well as photobleaching of these indicators complicate the situation. Here, we show that single-molecular multifluorescent probes can overcome these problems. While intracellular calcium plays a critical role as a signal transmitter and magnesium acts as a cofactor in many situations, the correlations between the two cations are now the main issue. We designed and synthesized a Ca2+−Mg2+ responsive multifluorescent probe, KCM-1. KCM-1 shows a spectral blue shift upon complexation to Ca2+ and a red shift to the presence of Mg2+. With data analyzed at different excitation wavelengths, the concentrations of Ca2+ and Mg2+ are simultaneously quantified. Furthermore, by using the AM-ester method, intracellular Ca2+ and Mg2+ concentrations are simultaneously imaged. Such a type of intracellular multiple analyte imaging by a single-molecular multifluorescent probe is successfully demonstrated for the first time.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0528228