Characterization of Complicated New Polymorphs of Chlorothalonil by X-ray Diffraction and Computer Crystal Structure Prediction

A simultaneous experimental and computational search for polymorphs of chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile) has been conducted, leading to the first characterization of forms 2 and 3. The crystal structure prediction study, using a specifically developed anisotropic atom−at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2004-06, Vol.126 (22), p.7071-7081
Hauptverfasser: Tremayne, Maryjane, Grice, Leanne, Pyatt, James C, Seaton, Colin C, Kariuki, Benson M, Tsui, Helen H. Y, Price, Sarah L, Cherryman, Julian C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simultaneous experimental and computational search for polymorphs of chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile) has been conducted, leading to the first characterization of forms 2 and 3. The crystal structure prediction study, using a specifically developed anisotropic atom−atom potential for chlorothalonil, gave as the global minimum in the lattice energy a structure that was readily refined against powder diffraction data to the known form 1 (P21/a). The structure of form 2 was solved and refined from powder diffraction data, giving a disordered structure in the R3̄m (166) space group (Z = 3). It could also be refined against a P1̄ ordered model, starting from a low-energy hypothetical sheet structure found in the computational search. This shows that the disorder could be associated with the stacking of ordered sheets. The disordered structure for form 2 was later confirmed by single-crystal X-ray diffraction. The structure of form 3, determined from single-crystal diffraction, contains three independent molecules in the asymmetric unit in P21 (4) (Z = 6). Powder diffraction showed that this single-herringbone structure was similar to two low-energy structures found in the search. Further analysis confirmed that form 3 has a similar lattice energy and contains elements from both these predicted structures, which can be considered as good approximations to the form 3 structure.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0498235