Applications of Vinylogous Mannich Reactions. Total Syntheses of the Ergot Alkaloids Rugulovasines A and B and Setoclavine

Concise syntheses of the Ergot alkaloids rugulovasine A (3a), rugulovasine B (3b), and setoclavine (2) have been completed by strategies that feature inter- and intramolecular vinylogous Mannich reactions as the key steps. Thus, the first synthesis of 3a,b commenced with the conversion of the known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2001-06, Vol.123 (25), p.5918-5924
Hauptverfasser: Liras, Spiros, Lynch, Christopher L, Fryer, Andrew M, Vu, Binh T, Martin, Stephen F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concise syntheses of the Ergot alkaloids rugulovasine A (3a), rugulovasine B (3b), and setoclavine (2) have been completed by strategies that feature inter- and intramolecular vinylogous Mannich reactions as the key steps. Thus, the first synthesis of 3a,b commenced with the conversion of the known indole 17 into 24 via the addition of the furan 22 to the iminium ion 21, which was generated in situ from the aldehyde 19. Cyclization of 24 by a novel SRN1 reaction followed by removal of the N-benzyl group furnished a mixture (1:2) of 3a and 3b. In an alternative approach to these alkaloids, the biaryl 35 was reduced with DIBAL-H to give an intermediate imine that underwent spontaneous cyclization via an intramolecular vinylogous Mannich addition to provide 36a,b. N-Methylation of the derived benzyl carbamates 37a,b followed by global deprotection gave a mixture (2:1) of rugulovasines A and B (3a,b). Setoclavine (2) was then prepared from the biaryl 41 using a closely related intramolecular vinylogous Mannich reaction to furnish the spirocyclic lactones 42a,b. These lactones were subsequently transformed by hydride reduction and reductive methylation into the ergoline derivatives 43a,b, which were in turn converted into 2 by deprotection and solvolytic 1,3-rearrangement of the allylic hydroxyl group.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja010577w