Rolled Stationary Phases:  Dimensionally Structured Textile Adsorbents for Rapid Liquid Chromatography of Proteins

A woven textile fabric, consisting of 60% cotton/40% polyester, tightly rolled in a cylindrical configuration, has a three-dimensional structure with sufficient hydrodynamic stability to withstand interstitial eluent velocities of up to 300 cm/min when packed into standard liquid chromatography colu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1999-03, Vol.38 (3), p.865-872
Hauptverfasser: Hamaker, Kent, Rau, Shiang-Lan, Hendrickson, Richard, Liu, Jim, Ladisch, Christine M, Ladisch, Michael R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A woven textile fabric, consisting of 60% cotton/40% polyester, tightly rolled in a cylindrical configuration, has a three-dimensional structure with sufficient hydrodynamic stability to withstand interstitial eluent velocities of up to 300 cm/min when packed into standard liquid chromatography column assemblies. Demonstration of the pressure stability of the cotton/polyester fabric was followed up with experiments in which the cotton (cellulose) portion was derivatized and the fabric evaluated for chromatography of proteins. When derivatized to give a (diethylamino)ethyl (DEAE) anion exchanger, a velocity independent plate height of 2 mm, a static capacity of 115 mg of bovine serum albumin/g of stationary phase, and a dynamic protein loading capacity which decreases only 25% over an 800% increase in mobile-phase velocity from 6.7 to 54 cm/min was achieved. The fibers that make up the stationary phase have a relatively nonporous structure which minimizes pore diffusional effects. A protein separation of Cytochrome C from β-lactoglobulin A is shown to be completed by ion-exchange chromatography in less than 10 min using an NaCl step gradient. Gradient chromatography of a hen egg white shows resolution of the proteins into two major components (lysozyme and ovalbumin) as well as two minor ones. A size exclusion separation of PEG 20 000 from glucose requires only 90 s. These characteristics, together with the ability of the cellulose-based stationary phase to withstand rapid flow rates, indicate that this type of stationary phase has potential for applications where chromatography using DEAE-cellulose particles has proven successful.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie970779u