Mathematical Modeling of Multicomponent Chain-Growth Polymerizations in Batch, Semibatch, and Continuous Reactors:  A Review

A practical methodology for the computer modeling of multicomponent chain-growth polymerizations, namely, free-radical and ionic systems, has been developed. This is an extension of a paper by Hamielec, MacGregor, and Penlidis (Multicomponent free-radical polymerization in batch, semi-batch and cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1997-04, Vol.36 (4), p.966-1015
Hauptverfasser: Dubé, Marc A, Soares, João B. P, Penlidis, Alexander, Hamielec, Archie E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A practical methodology for the computer modeling of multicomponent chain-growth polymerizations, namely, free-radical and ionic systems, has been developed. This is an extension of a paper by Hamielec, MacGregor, and Penlidis (Multicomponent free-radical polymerization in batch, semi-batch and continuous reactors. Makromol. Chem., Macromol. Symp. 1987, 10/ 11, 521). The approach is general, providing a common model framework which is applicable to many multicomponent systems. Model calculations include conversion of the monomers, multivariable distributions of concentrations of monomers bound in the polymer chains and molecular weights, long- and short-chain branching frequencies, chain microstructure, and cross-linked gel content when applicable. Diffusion-controlled termination, propagation, and initiation reactions are accounted for using the free-volume theory. When necessary, chain-length-dependent diffusion-controlled termination may be employed. Various comonomer systems are used to illustrate the development of practical semibatch and continuous reactor operational policies for the manufacture of copolymers with high quality and productivity. These comprehensive polymerization models may be used by scientists and engineers to reduce the time required to develop new polymer products and advanced production processes for their manufacture as well as to optimize existing processes.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie960481o