Two-Dimensional Dynamic Principal Component Analysis with Autodetermined Support Region
Dynamics are inherent characteristics of batch processes. In some cases, such dynamics exist not only within a particular batch, but also from batch to batch. In previous work, two-dimensional dynamic principal component analysis (2-D-DPCA) has been developed to monitor 2-D dynamics. Support region...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2009-01, Vol.48 (2), p.837-843 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dynamics are inherent characteristics of batch processes. In some cases, such dynamics exist not only within a particular batch, but also from batch to batch. In previous work, two-dimensional dynamic principal component analysis (2-D-DPCA) has been developed to monitor 2-D dynamics. Support region determination is a key step in 2-D-DPCA modeling and monitoring of a batch process. A proper support region can ensure modeling accuracy, monitoring efficiency, and reasonable fault diagnosis. In this work, an automatic method for support region determination is developed. This data-based method can be applied on different batch processes without prior process knowledge. Simulation shows that the developed method has good application potentials for both monitoring and fault diagnosis. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie800825m |