Simultaneous Hydrogenation of Multiring Aromatic Compounds over NiMo Catalyst
Hydrogenation of six model feeds containing three-, two-, and one-ring aromatic compounds was investigated to gain insights into the aromatic hydrogenation reaction chemistry over a commercial NiMo catalyst under practical reaction conditions. The hydrogenation reactivity of the aromatic compounds f...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2008-10, Vol.47 (19), p.7161-7166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogenation of six model feeds containing three-, two-, and one-ring aromatic compounds was investigated to gain insights into the aromatic hydrogenation reaction chemistry over a commercial NiMo catalyst under practical reaction conditions. The hydrogenation reactivity of the aromatic compounds followed the following order: phenanthrene ∼ two-ring aromatics ≫ one-ring aromatic. Comparison with previous studies revealed that the relative reactivity of the aromatic compounds is strongly influenced by the nature of the catalyst. Multiple-component feed studies showed that phenanthrene and naphthalene strongly inhibited the tetralin hydrogenation rate; however, naphthalene and tetralin had no appreciable effect on phenanthrene conversion. Langmuir−Hinshelwood-type rate equations were used to describe the reaction kinetics with physically meaningful and well-identified parameter values. The inhibition was attributed to competitive adsorption and was described in the kinetic model by adsorption terms that were obtained from the multicomponent feed experiments. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie8004258 |