Microphase Separation and Morphology of the Real Polymer System by Dynamic Density Functional Theory, Based on the Equation of State

Microphase separation and morphology evolution of polystyrene and polybutadiene blends are quantitatively studied by the dynamic density functional theory that is based on the equation of state (EOS-based DDFT). The structure parameters of coarse-grained beads are regressed from the experimental pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2008-09, Vol.47 (17), p.6368-6373
Hauptverfasser: Xu, Hui, Wang, Tengfang, Huang, Yongmin, Hu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microphase separation and morphology evolution of polystyrene and polybutadiene blends are quantitatively studied by the dynamic density functional theory that is based on the equation of state (EOS-based DDFT). The structure parameters of coarse-grained beads are regressed from the experimental pressure−volume−temperature data of pure components. The comparisons between simulated and experimental results are presented as illustrations. Notably, in the region near the critical composition, the deviation of the order−disorder transition temperature between simulation and experiment is
ISSN:0888-5885
1520-5045
DOI:10.1021/ie701776r