Modeling Fouling Effects in LDPE Tubular Polymerization Reactors. 1. Fouling Thickness Determination

Fouling in a low-density polyethylene (LDPE) tubular polymerization reactor is caused by the polyethylene/ethylene mixture forming two phases inside the reactor. Some of the polymer-rich phase is deposited on the reactor's inside wall, which considerably reduces heat-transfer rates. At a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2005-03, Vol.44 (5), p.1474-1479
Hauptverfasser: Buchelli, Alberto, Call, Michael L, Brown, Allen L, Bird, Andrew, Hearn, Steve, Hannon, Joe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fouling in a low-density polyethylene (LDPE) tubular polymerization reactor is caused by the polyethylene/ethylene mixture forming two phases inside the reactor. Some of the polymer-rich phase is deposited on the reactor's inside wall, which considerably reduces heat-transfer rates. At a given reactor pressure, the reactor inside wall temperature is the critical parameter in determining when fouling occurs and this is controlled by the coolant stream temperatures. In this work, plant data and a heat-transfer model were used to determine the fouling thickness in a LDPE industrial reactor and the speed at which the foulant material is deposited.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie040157q