Effect of catalyst properties and operating conditions on hydroprocessing of high-metals feeds
Catalytic hydroprocessing of high metals heavy oils, containing over 480 ppm Ni + V, was carried out in trickle bed pilot units. The analyses of the used catalysts (coke, metals content, and vanadium distribution) were correlated with the deactivation runs. The deactivation by coke is very much depe...
Gespeichert in:
Veröffentlicht in: | Ind. Eng. Chem. Process Des. Dev.; (United States) 1983-10, Vol.22 (4), p.653-659 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Catalytic hydroprocessing of high metals heavy oils, containing over 480 ppm Ni + V, was carried out in trickle bed pilot units. The analyses of the used catalysts (coke, metals content, and vanadium distribution) were correlated with the deactivation runs. The deactivation by coke is very much dependent on the catalyst physical properties (mean pore diameter), rather than on the chemical properties, and on the nature of the feed. As metals removal is a diffusion-controlled reaction, catalysts and operating conditions that increase the Thiele modulus, e.g., high activity and small pore catalysts, high hydrogen pressures and temperatures, show a stronger deactivation by feed metals. In this case, most of the vanadium was deposited in the outer edge of the catalyst particle. Unconventional vanadium profiles along the reactor length were obtained under certain conditions. Based on these data, a kinetic model was proposed which considers that demetallization is a complex reaction that occurs through a series of consecutive and parallel reactions. |
---|---|
ISSN: | 0196-4305 1541-5716 |
DOI: | 10.1021/i200023a018 |